Físicamente, se trata de una placa de material sintético, sobre la cual existe un circuito electrónico que conecta diversos componentes que se encuentran insertados o montados sobre la misma, los principales son:
- Microprocesador o Procesador: (CPU – Unidad de Procesamiento Central) el cerebro del computador montado sobre una pieza llamada zócalo o slot
- Memoria principal temporal: (RAM – Memoria de acceso aleatorio) montados sobre las ranuras de memoria llamados generalmente bancos de memoria.
- Las ranuras de expansión: Son slots donde se conectan las demás tarjetas que utilizará el computador como por ejemplo la tarjeta de video, sonido, modem, etc.
- Chips: Como puede ser el BIOS, los Chipset o controladores.
Es un sistema electromecánico de soporte y conexión eléctrica, instalado en la placa base, que se usa para fijar y conectar un microprocesador. Se utiliza en equipos de arquitectura abierta, donde se busca que haya variedad de componentes permitiendo el cambio de la tarjeta o el integrado. En los equipos de arquitectura propietaria, los integrados se sueldan sobre la placa base, como sucede en las videoconsolas.
Existen variantes desde 40 conexiones para integrados pequeños, hasta más de 1300 para microprocesadores, los mecanismos de retención del integrado y de conexión dependen de cada tipo de zócalo, aunque en la actualidad predomina el uso de zócalo ZIF (pines) o LGA (contactos).MICROPROCESADOR:
Es el circuito integrado central y más complejo de una computadora u ordenador; a modo de ilustración, se le suele asociar por analogía como el "cerebro" de una computadora.
El procesador es un circuito integrado constituido por millones de componentes electrónicos integrados. Constituye la unidad central de procesamiento (CPU) de un PC catalogado como microcomputador.
Desde el punto de vista funcional es, básicamente, el encargado de realizar toda operación aritmético-lógica, de control y de comunicación con el resto de los componentes integrados que conforman un PC, siguiendo el modelo base de Von Neumann. También es el principal encargado de ejecutar los programas, sean de usuario o de sistema; sólo ejecuta instrucciones programadas a muy bajo nivel, realizando operaciones elementales, básicamente, las aritméticas y lógicas, tales como sumar, restar, multiplicar, dividir, las lógicas binarias y accesos a memoria.
Esta unidad central de procesamiento está constituida, esencialmente, por registros, una unidad de control y una unidad aritmético lógica (ALU), aunque actualmente todo microprocesador también incluye una unidad de cálculo en coma flotante, (también conocida como "co-procesador matemático"), que permite operaciones por hardware con números decimales, elevando por ende notablemente la eficiencia que proporciona sólo la ALU con el cálculo indirecto a través de los clásicos números enteros. Aparece en computadoras de cuarta generación.
VENTILADOR:
Los ordenadores y PC modernos necesitan de ventilación forzada, ya que los componentes que utilizan suelen ser muy exigidos por las cada vez mas poderosas aplicaciones que corren, por ejemplo juegos 3D o programas de diseño.La refrigeración por aire es la mas común y da buenos resultados con simples ventiladores, que se instalan mas fácilmente y casi no requieren mantenimiento adicional.
Hay varios tipos de ventiladores para pc, como los que refrigeran el procesador y la tarjeta de video, o los que refrigeran la caja o gabinete del ordenador, que provocan una circulación de aire en donde entra aire fresco y expulsa el aire caliente.
Hay muchos modelos de ventiladores para PC, pero la compañía Zalman tiene algunos de los mejores, como por ejemplo elZalman CNPS8000 que cuenta con un ventilador de 8 centímetros, un disipador de cobre y un peso de 360 gramos. Es un ventilador diseñado especialmente para refrigerar procesadores, reduciendo la temperatura hasta en un 20% en comparación con los ventiladores que vienen por defecto, además de ser mas silencioso.
Para los ventiladores que van sobre el gabinete del ordenador, hay que tener en cuenta las ubicaciones disponibles del mismo, ya que no todos las cajas de PC permiten agregar ventiladores adicionales.
DISIPADOR:
En 2006 es percibido como un estándar de las placas base para PC, especialmente en tarjetas gráficas. Marcas como ATI Technologiesy nVIDIA entre otras tienen tarjetas gráficas en PCI-Express
El interfaz ATA (Advanced Technology Attachment) o PATA, originalmente conocido como IDE (Integrated device Electronics), es un estándar de interfaz para la conexión de los dispositivos de almacenamiento masivo de datos y las unidades ópticas que utiliza el estándar derivado de ATA y el estándar ATAPI.
Puerto USB
PUERTO FIREWIRE
El IEEE 1394 (conocido como FireWire por Apple Inc. y como i.Link por Sony) es un estándar multiplataforma para la entrada y salida de datos en serie a gran velocidad. Suele utilizarse para la interconexión de dispositivos digitales como cámaras digitales y videocámaras a computadoras.
ETHERNET
Conmutador o Switch - funciona como el bridge, pero permite la interconexión de múltiples segmentos de red, funciona en velocidades más rápidas y es más sofisticado. Los switches pueden tener otras funcionalidades, como Redes virtuales , y permiten su configuración a través de la propia red. Funciona básicamente en la capa 2 del modelo OSI (enlace de datos). Por esto son capaces de procesar información de las tramas; su funcionalidad más importante es en las tablas de dirección. Por ejemplo, una computadora conectada al puerto 1 del conmutador envía una trama a otra computadora conectada al puerto 2; el switch recibe la trama y la transmite a todos sus puertos, excepto aquel por donde la recibió; la computadora 2 recibirá el mensaje y eventualmente lo responderá, generando tráfico en el sentido contrario; ahora el switch conocerá las direcciones MAC de las computadoras en el puerto 1 y 2; cuando reciba otra trama con dirección de destino de alguna de ellas, sólo transmitirá la trama a dicho puerto disminuyendo así el tráfico de la red y contribuyendo al buen funcionamiento de la misma.
DISIPADOR:
Un disipador es un elemento físico, sin partes móviles, destinado a eliminar el exceso de calor de cualquier elemento.
Su funcionamiento se basa en la segunda ley de la termodinámica, transfiriendo el calor de la parte caliente que se desea disipar al aire. Este proceso se propicia aumentando la superficie de contacto con el aire permitiendo una eliminación más rápida del calor excedente.
RANURAS DE EXPANSIÓN
ISA
La ranura ISA es una ranura de expansión de 16 bits capaz de ofrecer hasta 16 MB/s a 8 megahercios. Los componentes diseñados para la ranura ISA eran muy grandes y fueron de las primeras ranuras en usarse en las computadoras personales. Hoy en día es una tecnología en desuso y ya no se fabrican placas madre con ranuras ISA. Estas ranuras se incluyeron hasta los primeros modelos del microprocesador Pentium III. Fue reemplazada en el año 2000 por la ranura PCI.
EL BUS EISA
Las siglas EISA corresponden a la (E) nhanced (I)ndustrial (S)tandart (A)rchitecture, que vendría a ser algo así como la arquitectura industrial estandarizada y ampliada. En la practica el Bus EISA no es sino una prolongación del Bus AT, desarrollada por los fabricantes de computadoras más importantes del mundo ( a excepción de IBM) a fin de enfrentar los cada vez más importantes retos planteados por los procesadores de 32 bits. El BUS EISA es un Bus de 32 bits autentico. Esto significa que los 32 conductos de datos de su CPU están disponibles en el slot de expansión correspondiente.
El índice notablemente superior de transmisión de datos no es la única ventaja que lo caracteriza frente al BUS ISA. Hay un rasgo mucho más importante y habitualmente menos tomado en cuenta que lo define: la capacidad multiusuario. Esta posibilita el acceso común de varios procesadores a un mismo Bus, con lo cual problemas como la configuración de una computadora en paralelo a través de tarjetas de CPU, tendrían fácil solución.
PCI
Peripheral Component Interconnect o PCI es un bus de ordenador estándar para conectar dispositivos periféricos directamente a su placa base. Estos dispositivos pueden ser circuitos integrados ajustados en ésta (los llamados "dispositivos planares" en la especificación PCI) o tarjetas de expansión que se ajustan en conectores. Es común en las computadoras personales, donde ha desplazado al ISA como bus estándar, pero también se emplea en otro tipo de ordenadores.
A diferencia de los buses ISA, el bus PCI permite la configuración dinámica de un dispositivo periférico. En el tiempo de arranque del sistema, las tarjetas PCI y el BIOS interactúan y negocian los recursos solicitados por la tarjeta PCI. Esto permite asignación de IRQs y direcciones del puerto por medio de un proceso dinámico diferente del bus ISA, donde las IRQs tienen que ser configuradas manualmente usando jumpersexternos. Las últimas revisiones de ISA y el bus MCA de IBM ya incorporaban tecnologías que automatizaban todo el proceso de configuración de las tarjetas, pero el bus PCI demostró una mayor eficacia en tecnología plug and play. Aparte de esto, el bus PCI proporciona una descripción detallada de todos los dispositivos PCI conectados a través del espacio de configuración PCI.
HP:
Ofrece todo el poder de una PC en 1/3 del tamaño
Puedes compartir tus fotos fácil y rápidamente con el lector de tarjetas de memoria 15-en-1 en el panel frontal. Solamente introduce la tarjeta de memoria y tus fotos se transfieren automáticamente al PC, y todas las HP contienen suficiente espacio en el disco duro para el fotógrafo más entusiasta
HP es líder mundial en PCs de consumo porque respaldamos nuestros productos con excelente servicio y soporte técnico.
Ranuras AGP:
El puerto AGP (Accelerated Graphics Port) es desarrollado por Intel en 1996 como puerto gráfico de altas prestaciones, para solucionar el cuello de botella que se creaba en las gráficas PCI. Sus especificaciones parten de las del bus PCI 2.1, tratándose de un bus de 32bits.
Con el tiempo has salido las siguientes versiones:
- AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V.
- AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V.
- AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas.
- AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 GB/s y funcionando a un voltaje de 0,7V o 1,5V.
Se utiliza exclusivamente para tarjetas gráficas y por su arquitectura sólo puede haber una ranura AGP en la placa base.
Se trata de una ranura de 8cm de longitud, instalada normalmente en principio de las ranuras PCI (la primera a partir del Northbridge), y según su tipo se pueden deferenciar por la posición de una pestaña de control que llevan.
Las primeras (AGP 1X y 2X) llevaban dicha pestaña en la parte más próxima al borde de la placa base (imagen 1), mientras que las actuales (AGP 8X compatibles con 4X) lo llevan en la parte más alejada de dicho borde (imagen 2).
Existen dos tipos más de ranuras: Unas que no llevan esta muesca de control (imagen 3) y otras que llevan las dos muescas de control. En estos casos se trata de ranuras compatibles con AGP 1X, 2X y 4X (las ranuras compatibles con AGP 4X - 8X llevan siempre la pestaña de control).
Es muy importante la posición de esta muesca, ya que determina los voltajes suministrados, impidiendo que se instalen tarjetas que no soportan algunos voltajes y podrían llegar a quemarse.
Con la aparición del puerto PCIe en 2004, y sobre todo desde 2006, el puerto AGP cada vez está siendo más abandonado, siendo ya pocas las gráficas que se fabrican bajo este estándar.
A la limitación de no permitir nada más que una ranura AGP en placa base se suma la de la imposibilidad (por diferencia de velocidades y bus) de usar en este puerto sistemas de memoria gráfica compartida, como es el caso de TurboCaché e HyperMemory.
CNR
(Comunication and Network Riser), ranuras de expansión para dispositivos de comunicación como módems y tarjetas red, lanzadas en 2000 por Intel.
(Comunication and Network Riser), ranuras de expansión para dispositivos de comunicación como módems y tarjetas red, lanzadas en 2000 por Intel.
PCI-Express
PCI-Express, abreviado como PCI-E o PCIE, aunque erróneamente se le suele abreviar como PCIX o PCI-X. Sin embargo, PCI-Express no tiene nada que ver con PCI-X que es una evolución de PCI, en la que se consigue aumentar el ancho de banda mediante el incremento de la frecuencia, llegando a ser 32 veces más rápido que el PCI 2.1. Su velocidad es mayor que PCI-Express, pero presenta el inconveniente de que al instalar más de un dispositivo la frecuencia base se reduce y pierde velocidad de transmisión.
Este bus está estructurado como enlaces punto a punto,full-duplex, trabajando en serie. En PCIE 1.1 (el más común en 2007) cada enlace transporta 250 MB/s en cada dirección. PCIE 2.0 dobla esta tasa y PCIE 3.0 la dobla de nuevo.
Cada slot de expansión lleva uno, dos, cuatro, ocho, dieciséis o treinta y dos enlaces de datos entre la placa base y las tarjetas conectadas. El número de enlaces se escribe con una x de prefijo (x1 para un enlace simple y x16 para una tarjeta con dieciséis enlaces. Treinta y dos enlaces de 250MB/s dan el máximo ancho de banda, 8 GB/s (250 MB/s x 32) en cada dirección para PCIE 1.1. En el uso más común (x16) proporcionan un ancho de banda de 4 GB/s (250 MB/s x 16) en cada dirección. En comparación con otros buses, un enlace simple es aproximadamente el doble de rápido que el PCI normal; un slot de cuatro enlaces, tiene un ancho de banda comparable a la versión más rápida de PCI-X 1.0, y ocho enlaces tienen un ancho de banda comparable a la versión más rápida de AGP.
Está pensado para ser usado sólo como bus local, aunque existen extensores capaces de conectar múltiples placas base mediante cables de cobre o incluso fibra óptica. Debido a que se basa en el bus PCI, las tarjetas actuales pueden ser reconvertidas a PCI-Express cambiando solamente la capa física. La velocidad superior del PCI-Express permitirá reemplazar casi todos los demás buses, AGP y PCI incluidos. La idea de Intel es tener un solo controlador PCI-Express comunicándose con todos los dispositivos, en vez de con el actual sistema de puente norte y puente sur. Este conector es usado mayormente para conectar tarjetas gráficas.
No es todavía suficientemente rápido para ser usado como bus de memoria. Esto es una desventaja que no tiene el sistema similarHyperTransport, que también puede tener este uso. Además no ofrece la flexibilidad del sistema InfiniBand, que tiene rendimiento similar, y además puede ser usado como bus interno externo.
En 2006 es percibido como un estándar de las placas base para PC, especialmente en tarjetas gráficas. Marcas como ATI Technologiesy nVIDIA entre otras tienen tarjetas gráficas en PCI-Express
BIOS
El BIOS (sigla en inglés de Basic input/output system; en español "sistema básico de entrada y salida") es un software que localiza y reconoce todos los dispositivos necesarios para cargar el sistema operativo en la memoria RAM; es un software muy básico instalado en la placa base que permite que ésta cumpla su cometido. Proporciona la comunicación de bajo nivel, el funcionamiento y configuración del hardware del sistema que, como mínimo, maneja el teclado y proporciona una salida básica (emitiendo pitidos normalizados por el altavoz de la computadora si se producen fallos) durante el arranque. El BIOS usualmente está escrito en lenguaje ensamblador. El primer uso del término "BIOS" se dio en el sistema operativo CP/M, y describe la parte de CP/M que se ejecutaba durante el arranque y que iba unida directamente al hardware (las máquinas de CP/M usualmente tenían un simple cargador arrancable en la memoria de sólo lectura, y nada más). La mayoría de las versiones de MS-DOS tienen un archivo llamado "IBMBIO.COM" o "IO.SYS" que es análogo al BIOS de CP/M.
El BIOS es un sistema básico de entrada/salida que normalmente pasa inadvertido para el usuario final de computadoras. Se encarga de encontrar el sistema operativo y cargarlo en la memoria RAM. Posee un componente de hardware y otro de software; este último brinda una interfaz generalmente de texto que permite configurar varias opciones del hardware instalado en el PC, como por ejemplo el reloj, o desde qué dispositivos de almacenamiento iniciará el sistema operativo (Microsoft Windows, GNU/Linux, Mac OS X, etc.).
El BIOS gestiona al menos el teclado de la computadora, proporcionando incluso una salida bastante básica en forma de sonidos por el altavoz incorporado en la placa base cuando hay algún error, como por ejemplo un dispositivo que falla o debería ser conectado. Estos mensajes de error son utilizados por los técnicos para encontrar soluciones al momento de armar o reparar un equipo.
El BIOS antiguamente residía en memorias ROM o EPROM pero desde mediados de los 90 comenzó a utilizarse memorias flash que podían ser actualizadas por el usuario. Es un programa tipo firmware. El BIOS es una parte esencial del hardware que es totalmente configurable y es donde se controlan los procesos del flujo de información en el bus del ordenador, entre el sistema operativo y los demás periféricos. También incluye la configuración de aspectos importantes de la máquina.
PUENTE NORTE
El Northbridge (traducido como: "puente norte" en español) es el circuito integrado más importante del conjunto de chips (Chipset) que constituye el corazón de la placa madre. Recibe el nombre por situarse en la parte superior de las placas madres con formato ATX y por tanto no es un término utilizado antes de la aparición de este formato para ordenadores de sobremesa. También es conocido como MCH(concentrador controlador de memoria) en sistemas Intel y GMCH si incluye el controlador del sistema gráfico.
Es el chip que controla las funciones de acceso desde y hasta microprocesador, AGP o PCI-Express, memoria RAM, vídeo integrado (dependiendo de la placa) y Southbridge. Su función principal es la de controlar el funcionamiento del bus del procesador, la memoria y el puerto AGP o PCI-Express. De esa forma, sirve de conexión (de ahí su denominación de "puente") entre la placa madre y los principales componentes de la PC: microprocesador, memoria RAM y tarjeta de vídeo AGP o PCI Express. Generalmente, las grandes innovaciones tecnológicas, como el soporte de memoria DDR o nuevos FSB, se implementan en este chip. Es decir, el soporte que tenga una placa madre para determinado tipo de microprocesadores, memorias RAM o placas AGP estará limitado por las capacidades del Northbridge de que disponga.
La tecnología de fabricación de un Northbridge es muy avanzada, y su complejidad, comparable a la de un microprocesador moderno. Por ejemplo, en un Chipset, el Northbridge debe encargarse de soportar el bus frontal de alta velocidad que lo conecta con el procesador. Si pensamos en el bus de 400 MHz utilizado por ejemplo en el último Athlon XP, y el de 800 MHz del Intel Prescott, nos damos cuenta de que es una tarea bastante exigente. Además en algunas placas tienen un adaptador de vídeo integrado lo que le añade trabajo al sistema. Debido a esto, la mayoría de los fabricantes de placas madres colocan un disipador (a veces con un ventilador) encima del Northbridge para mantenerlo bien refrigerado.
Antiguamente, el Northbridge estaba compuesto por tres controladores principales: memoria RAM, puerto AGP o PCI Express y bus PCI. Hoy en día, el controlador PCI se inserta directamente en el Southbridge ("puente sur"), y en algunas arquitecturas más nuevas el controlador de memoria se encuentra integrado en el procesador; este es el caso de los Athlon 64 o los Intel i7 y posteriores.
Los Northbridges tienen un bus de datos de 64 bit en la arquitectura X86 y funcionan en frecuencias que van desde los 66 MHz de las primeras placas que lo integraban en 1998 hasta 1 GHz de los modelos actuales de SiS para procesadores AMD64
PUENTE SUR
El puente sur (en inglés southbridge) es un circuito integrado que se encarga de coordinar los diferentes dispositivos de entrada y salida y algunas otras funcionalidades de baja velocidad dentro de la placa base. El puente sur no está conectado a la unidad central de procesamiento, sino que se comunica con ella indirectamente a través del puente norte.
La funcionalidad encontrada en los puentes sur actuales incluye soporte para:
Peripheral Component Interconnect
Bus ISA
System Management Bus
Controlador para el acceso directo a memoria
Controlador de Interrupcciones
Controlador para Integrated Drive Electronics (SATA o PATA)
Puente LPC
Reloj en Tiempo Real - Real Time Clock
Administración de potencia eléctrica APM y ACPI
BIOS
Interfaz de sonido AC97 o HD Audio.
Adicionalmente el southbridge puede incluir soporte para Ethernet, RAID, USB y Codec de Audio. El southbridge algunas veces incluye soporte para el teclado, el ratón y los puertos seriales, sin embargo, aún en el 2007 las computadoras personales gestionaban esos recursos por medio de otro dispositivo conocido como Super I/O.
En los últimos modelos de placas el Southbridge integra cada vez mayor número de dispositivos a conectar y comunicar por lo que fabricantes como AMD o VIA Technologies han desarrollado tecnologías como HyperTransport o Ultra V-Link respectivamente para evitar el efecto cuello de botella que se producía al usar como puente el bus PCI.
IDE
El interfaz ATA (Advanced Technology Attachment) o PATA, originalmente conocido como IDE (Integrated device Electronics), es un estándar de interfaz para la conexión de los dispositivos de almacenamiento masivo de datos y las unidades ópticas que utiliza el estándar derivado de ATA y el estándar ATAPI.
Un controlador de disquete (floppy disk controller FDC en inglés) es un chip especializado y su circuitería asociada que se encarga de gobernar los procesos de lectura y escritura de una unidad de disquete (Floppy Disk Drive, FDD en inglés).
Aunque el sistema mayoritariamente usado proviene del Western Digital WD1771 y sobre todo de sus sucesores, el NEC µPD765 utilizado en el IBM PC y el Intel 82072A en el IBM AT, son dignos de mención los custom chips usados en el Apple Macintosh y sobre todo por su versatilidad los de los Commodore Amiga.
Para conectarse con las unidades de disquete mayoritariamente usan un conector macho de cable plano de 34 pines, con una muesca guía, aunque en primitivas tarjetas o equipos como el AmstradCPC 6128 se recurría al conector de borde de tarjeta con ranura guía, idéntico al presente en las unidades de 5,25
Serial SATA
Serial ATA o SATA (acrónimo de Serial AdvancedTechnologyAttachment) es una interfaz de transferencia de datos entre la placa base y algunos dispositivos de almacenamiento, como puede ser el disco duro, lectores y regrabadores de CD/DVD/BR,Unidades de Estado Sólido u otros dispositivos de altas prestaciones que están siendo todavía desarrollados. Serial ATA sustituye a la tradicional Parallel ATA o P-ATA. SATA proporciona mayores velocidades, mejor aprovechamiento cuando hay varias unidades, mayor longitud del cable de transmisión de datos y capacidad para conectar unidades al instante, es decir, insertar el dispositivo sin tener que apagar el ordenador o que sufra un cortocircuito como con los viejos Molex.
Actualmente es una interfaz aceptada y estandarizada en las placas base de PC. La Organización Internacional Serial ATA (SATA-IO) es el grupo responsable de desarrollar, de manejar y de conducir la adopción de especificaciones estandarizadas de Serial ATA. Los usuarios de la interfaz SATA se benefician de mejores velocidades, dispositivos de almacenamientos actualizables de manera más simple y configuración más sencilla. El objetivo de SATA-IO es conducir a la industria a la adopción de SATA definiendo, desarrollando y exponiendo las especificaciones estándar para la interfaz SATA.
AT
La fuente AT tiene tres tipos de conectores de salida. El primer tipo, del cual hay dos, son los que alimentan la placa madre. Los dos tipos restantes, de los cuales hay una cantidad variable, alimentan a los periféricos no enchufados en un slot de la placa madre, como ser unidades de discos duros, unidades de CD-ROM, disqueteras, etc.
La conexión a la placa madre es a través de dos conectores de 6 pines cada uno, los cuales deben ir enchufados de modo que los cables negros de ambos queden unidos en el centro.
ATX
El estándar ATX (AdvancedTechnology Extended) se desarrolló como una evolución del factor de forma de Baby-AT, para mejorar la funcionalidad de los actuales E/S y reducir el costo total del sistema. Este fue creado por Intel en 1995. Fue el primer cambio importante en muchos años en el que las especificaciones técnicas fueron publicadas por Intel en 1995 y actualizadas varias veces desde esa época, la versión más reciente es la 2.2 [2] publicada en 2004.
Una placa ATX tiene un tamaño de 305 mm x 244 mm (12" x 9.6"). Esto permite que en algunas cajas ATX quepan también placas BozamicroATX.
Otra de las características de las placas ATX son el tipo de conector a la fuente de alimentación, el cual es de 24 (20+4) contactos que permiten una única forma de conexión y evitan errores como con las fuentes AT y otro conector adicional llamado P4, de 4 contactos. También poseen un sistema de desconexión por software.
SDRAM
SynchronousDynamicRandom Access Memory (SDRAM) es una memoria dinámica de acceso aleatorio DRAMque tiene una interfaz síncrona. Tradicionalmente, la memoria dinámica de acceso aleatorio DRAM tiene una interfaz asíncrona, lo que significa que el cambio de estado de la memoria tarda un cierto tiempo, dado por las características de la memoria, desde que cambian sus entradas. En cambio, en las SDRAM el cambio de estado tiene lugar en el momento señalado por una señal de reloj y, por lo tanto, está sincronizada con el bus de sistema del ordenador. El reloj también permite controlar una máquina de estados finitos interna que controla la función de "pipeline" de las instrucciones de entrada. Esto permite que el chip tenga un patrón de operación más complejo que la DRAM asíncrona, que no tiene una interfaz de sincronización.
El método de segmentación significa que el chip puede aceptar una nueva instrucción antes de que haya terminado de procesar la anterior. En una escritura de datos, el comando "escribir" puede ser seguido inmediatamente por otra instrucción, sin esperar a que los datos se escriban en la matriz de memoria. En una lectura, los datos solicitados aparecen después de un número fijo de pulsos de reloj tras la instrucción de lectura, durante los cuales se pueden enviar otras instrucciones adicionales. (Este retraso se llama latencia y es un parámetro importante a considerar cuando se compra una memoria SDRAM para un ordenador.)
DDRSDRAM
Memoria síncrona, envía los datos dos veces por cada ciclo de reloj. De este modo trabaja al doble de velocidad del bus del sistema, sin necesidad de aumentar la frecuencia de reloj. Se presenta en módulos DIMM de 184 contactos en el caso de ordenador de escritorio y en módulos de 144 contactos para los ordenadores portátiles. Los tipos disponibles son:
PC2100 o DDR 266: funciona a un máx de 133 MHz.
PC2700 o DDR 333: funciona a un máx de 166 MHz.
PC3200 o DDR 400: funciona a un máx de 200 MHz.
DDR2 SDRAM
Las memorias DDR 2 son una mejora de las memorias DDR (Double Data Rate), que permiten que los búferes de entrada/salida trabajen al doble de la frecuencia del núcleo, permitiendo que durante cada ciclo de reloj se realicen cuatro transferencias. Se presentan en módulosDIMM de 240 contactos. Los tipos disponibles son:
PC2-4200 o DDR2-533: funciona a un máx de 533 MHz.
PC2-5300 o DDR2-667: funciona a un máx de 667 MHz.
PC2-6400 o DDR2-800: funciona a un máx de 800 MHz.
PC2-8600 o DDR2-1066: funciona a un máx de 1066 MHz.
PC2-9000 o DDR2-1200: funciona a un máx de 1200 MHz
DDR3 SDRAM
Las memorias DDR 3 son una mejora de las memorias DDR 2, proporcionan significantes mejoras en el rendimiento en niveles de bajo voltaje, lo que lleva consigo una disminución del gasto global de consumo. Los módulos DIMM DDR 3 tienen 240 pines, el mismo número que DDR 2; sin embargo, los DIMMs son físicamente incompatibles, debido a una ubicación diferente de la muesca. Los tipos disponibles son:
PC3-8600 o DDR3-1066: funciona a un máx de 1066 MHz.
PC3-10600 o DDR3-1333: funciona a un máx de 1333 MHz.
PC3-12800 o DDR3-1600: funciona a un máx de 1600 MHz.
SIMM
IMM (siglas de Single In-line Memory Module), es un formato para módulos de memoria RAM que consisten en placas de circuito impreso sobre las que se montan los integrados de memoria DRAM. Estos módulos se inserta en zócalos sobre la placa base. Los contactos en ambas caras están interconectados, esta es la mayor diferencia respecto de sus sucesores los DIMMs. Fueron muy populares desde principios de los 80 hasta finales de los 90, el formato fue estandarizado por JEDEC bajo el número JESD-21C.
DIMM
DIMM son las siglas de «Dual In-line Memory Module» y que podemos traducir como Módulo de Memoria en línea doble. Son módulos dememoria RAM utilizados en ordenadores personales. Se trata de un pequeño circuito impreso que contiene chips de memoria y se conecta directamente en ranuras de la placa base. Los módulos DIMM son reconocibles externamente por poseer sus contactos (o pines) separados en ambos lados, a diferencia de los SIMM que poseen los contactos de modo que los de un lado están unidos con los del otro.
Las memorias DIMM comenzaron a reemplazar a las SIMM como el tipo predominante de memoria cuando los microprocesadores IntelPentium dominaron el mercado.
Un DIMM puede comunicarse con el PC a 64 bits (y algunos a 72 bits) en vez de los 32 bits de los SIMM.
Funciona a una frecuencia de 133 MHz cada una.
Los módulos en formato DIMM (Módulo de Memoria en Línea Doble),al ser memorias de 64 bits, lo cual explica por qué no necesitan emparejamiento. Los módulos DIMM poseen chips de memoria en ambos lados de la placa de circuito impresa, y poseen a la vez, 84 contactos de cada lado, lo cual suma un total de 168 contactos. Además de ser de mayores dimensiones que los módulos SIMM (130x25mm), estos módulos poseen una segunda muesca que evita confusiones.
Cabe observar que los conectores DIMM han sido mejorados para facilitar su inserción, gracias a las palancas ubicadas a ambos lados de cada conector.
También existen módulos más pequeños, conocidos como SO DIMM (DIMM de contorno pequeño), diseñados para ordenadores portátiles. Los módulos SO DIMM sólo cuentan con 144 contactos en el caso de las memorias de 64 bits, y con 77 contactos en el caso de las memorias de 32 bits.
RIMM
RIMM, acrónimo de RambusInlineMemory Module(Módulo de Memoria en Línea Rambus), designa a los módulos de memoria RAM que utilizan una tecnología denominada RDRAM, desarrollada por Rambus Inc. a mediados de los años 1990 con el fin de introducir un módulo de memoria con niveles de rendimiento muy superiores a los módulos de memoria SDRAM de 100 MHz y 133 MHz disponibles en aquellos años.
Los módulos RIMMRDRAM cuentan con 184 pines y debido a sus altas frecuencias de trabajo requieren de difusores de calor consistentes en una placa metálica que recubre los chips del módulo. Se basan en un bus de datos de 16 bits y están disponibles en velocidades de 300MHz (PC-600), 356 Mhz (PC-700), 400 MHz (PC-800) y 533 Mhz (PC-1066) que por su pobre bus de 16 bits tenía un rendimiento 4 veces menor que la DDR. La RIMM de 533MHz tiene un rendimiento similar al de un módulo DDR133, a pesar de que sus latencias son 10 veces peores que la DDR.
Inicialmente los módulos RIMM fueron introducidos para su uso en servidores basados en Intel Pentium 4. Rambus no manufactura módulos RIMM si no que tiene un sistema de licencias para que estos sean manufacturados por terceros siendo Samsung el principal fabricante de éstos.
A pesar de tener la tecnología RDRAM niveles de rendimiento muy superiores a la tecnología SDRAM y las primeras generaciones de DDR RAM, debido al alto costo de esta tecnología no han tenido gran aceptación en el mercado de PC. Su momento álgido tuvo lugar durante el periodo de introducción del Pentium 4 para el cual se diseñaron las primeras placas base, pero Intel ante la necesidad de lanzar equipos más económicos decidió lanzar placas base con soporte para SDRAM y más adelante para DDR RAM desplazando esta última tecnología a los módulos RIMM del mercado.
SO-DIMM
Las memorias SO-DIMM (Small OutlineDIMM) consisten en una versión compacta de los módulos DIMM convencionales. Debido a su tamaño tan compacto, estos módulos de memoria suelen emplearse en computadores portátiles, PDAs y notebooks, aunque han comenzado a sustituir a los SIMM/DIMM en impresoras de gama alta y tamaño reducido y en equipos con placa base miniatura Mini-ITX).
Los módulos SO-DIMM tienen 100, 144 ó 200 pines. Los de 100 pines soportan transferencias de datos de 32 bits, mientras que los de 144 y 200 lo hacen a 64 bits. Estas últimas se comparan con los DIMM de 168 pines (que también realizan transferencias de 64 bits). A simple vista se diferencian porque las de 100 tienen 2 hendiduras guía, las de 144 una sola hendidura casi en el centro y las de 200 una hendidura parecida a la de 144 pero más desplazada hacia un extremo.
Los SO-DIMM tienen más o menos las mismas características en voltaje y potencia que las DIMM corrientes, utilizando además los mismos avances en la tecnología de memorias (por ejemplo existen DIMM y SO-DIMM con memoria PC2-5300 (DDR2.533/667) con capacidades de hasta 2 GB y Latencia CAS (de 2.0, 2.5 y 3.0).
Asimismo se han desarrollado ordenadores en una sola placa SO-DIMM como el ToradexColibri (basado en CPU Intel XScale y Windows CE5.0).
GABINETES
En informática, las carcasas, torres, gabinetes, cajas o chasis de computadora u ordenador, son el armazón del equipo que contiene los componentes del ordenador, normalmente construidos de acero, plástico o aluminio. También podemos encontrarlas de otros materiales como madera o polimetilmetacrilato para cajas de diseño. A menudo de metal electro galvanizado. Su función es la de proteger los componentes del computador.
Tamaños
El tamaño de las carcasas viene dado por el factor de forma de la placa base. Sin embargo el factor de forma solo especifica el tamaño interno de la caja.
© Barebone: Gabinetes de pequeño tamaño cuya función principal es la de ocupar menor espacio y crea un diseño más agradable. Son útiles para personas que quieran dar buena impresión como una persona que tenga un despacho en el que reciba a mucha gente. Los barebone tienen el problema de que la expansión es complicada debido a que admite pocos (o ningún) dispositivos. Otro punto en contra es el calentamiento al ser de tamaño reducido aunque para una persona que no exija mucho trabajo al ordenador puede estar bien. Este tipo de cajas tienen muchos puertos USB para compensar la falta de dispositivos, como una disquetera (ya obsoleta), para poder conectar dispositivos externos como un disco USB o una memoria.
© Mini torre: Dispone de una o dos bahías de 5 ¼ y dos o tres bahías de 3 ½. Dependiendo de la placa base se pueden colocar bastantes tarjetas. No suelen tener problema con los USB y se venden bastantes modelos de este tipo de torre ya que es pequeña y a su vez hace las paces con la expansión. Su calentamiento es normal y no tiene el problema de los barebone.
© Sobremesa: No se diferencian mucho de las mini Torres, a excepción de que en lugar de estar en vertical se colocan en horizontal sobre el escritorio. Antes se usaban mucho, pero ahora están cada vez más en desuso. Se solía colocar sobre ella el monitor.
© Media torre o semitorre: La diferencia de ésta es que aumenta su tamaño para poder colocar más dispositivos. Normalmente son de 4 bahías de 5 ¼ y 4 de 3 ½ y un gran número de huecos para poder colocar tarjetas y demás aunque esto depende siempre de la placa base.
© Torre: Es el más grande. Puedes colocar una gran cantidad de dispositivos y es usado cuando se precisa una gran cantidad de dispositivos.
© Servidor: Suelen ser gabinetes más anchos que los otros y de una estética inexistente debido a que van destinadas a lugares en los que no hay mucho tránsito de clientes como es un centro de procesamiento de datos. Su diseño está basado en la eficiencia donde los periféricos no es la mayor prioridad sino el rendimiento y la ventilación. Suelen tener más de una fuente de alimentación de extracción en caliente para que no se caiga el servidor en el caso de que se estropee una de las dos y normalmente están conectados a un SAI que protege a los equipos de los picos de tensión y consigue que en caso de caída de la red eléctrica el servidor siga funcionando por un tiempo limitado.
© Rack: Son otro tipo de servidores. Normalmente están dedicados y tienen una potencia superior que cualquier otro ordenador. Los servidores rack se atornillan a un mueble que tiene una medida especial: la "U". Una "U" es el ancho de una ranura del mueble. Este tipo de servidores suele colocarse en salas climatizadas debido a la temperatura que alcanza.
© Modding: El modding es un tipo de gabinete que es totalmente estético incluso se podría decir en algunos casos que son poco funcionales. Normalmente este tipo de gabinetes lleva incorporado un montón de luces de neón, ventiladores, dibujos y colores extraños pero también los hay con formas extravagantes que hacen que muchas veces sea difícil laexpansión (como una torre en forma de pirámide en la que colocar componentes se complica.
© Portátiles: Son equipos ya definidos. Poco se puede hacer para expandirlos y suelen calentarse mucho si son muy exigidos. El tamaño suele depender del monitor que trae incorporado y con los tiempos son cada vez más finos. Su utilidad se basa en que tenemos todo el equipo integrado en el gabinete: Teclado, monitor, y mouse, y por lo tanto lo hacen portátil.
FUENTE DE ALIMENTACIÓN
En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora, router, etc.).
Clasificación
Las fuentes de alimentación, para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineal y conmutada. Las lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de la misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más complejo y por tanto más susceptible a averías.
Fuentes de alimentación colineales
Las fuentes lineales siguen el esquema: transformador, rectificador, filtro, regulación y salida.
En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en continua se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador. La regulación, o estabilización de la tensión a un valor establecido, se consigue con un componente denominado regulador de tensión. La salida puede ser simplemente un condensador. Esta corriente abarca toda la energía del circuito, esta fuente de alimentación deben tenerse en cuenta unos puntos concretos a la hora de decidir las características del transformador.
Fuentes de alimentación conmutadas
Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación. Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 Kilociclos típicamente) entre corte (abiertos) y saturación (cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos) y filtrados (inductores y condensadores) para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia y por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son más complejas y generan ruido eléctrico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuentes.
Las fuentes conmutadas tienen por esquema: rectificador, conmutador, transformador, otro rectificador y salida.
La regulación se obtiene con el conmutador, normalmente un circuito PWM (Pulse WidthModulation) que cambia el ciclo de trabajo. Aquí las funciones del transformador son las mismas que para fuentes lineales pero su posición es diferente. El segundo rectificador convierte la señal alterna pulsante que llega del transformador en un valor continuo. La salida puede ser también un filtro de condensador o uno del tipo LC.
Las ventajas de las fuentes lineales son una mejor regulación, velocidad y mejores características EMC. Por otra parte las conmutadas obtienen un mejor rendimiento, menor coste y tamaño.
LOS PUERTOS DE COMUNICACIÓN
Los puertos de comunicación son herramientas que permiten manejar e intercambiar datos entre un computador (generalmente están integrados en las tarjetas madres) y sus diferentes periféricos, o entre dos computadores. Entre los diferentes puertos de comunicación tenemos:
Estos puertos son en esencia puertos paralelos que se utilizan para conectar pequeños periféricos a la PC. Su nombre viene dado por las computadoras de modelo PS/2 de IBM, donde fueron utilizados por primera vez.
Este es un puerto serial, con conectores de tipo Mini DIN, el cual consta por lo general de 6 pines o conectores. La placa base tiene el conector hembra. En las placas de hoy en día se pueden distinguir el teclado del Mouse por sus colores, siendo el teclado (por lo general) el de color violeta y el Mouse el de color verde.
1. Puertos PS/2
2. Puertos USB (Universal Serial Bus)
LPT:
Provee de una comunicación de alta velocidad y bidireccional entre un ordenador y un dispositivo externo que puede comunicarse 50 ó 100 veces más rápido que con el puerto paralelo original; además de ser totalmente compatible con los periféricos, impresoras y softwareque existían previamente.
Cuando IBM introdujo la computadora personal en 1981, el puerto paralelo de impresión estaba incluido como una alternativa al puerto serie, que era más lento para poder manejar las últimas impresoras de matriz de puntos de alto rendimiento. El puerto paralelo tenía la capacidad de transmitir 8 bits de datos a la vez, mientras que el puerto serie transmitía un bit a la vez. Cuando el IBM PC fue introducida, las impresoras de matriz de punto eran el periférico principal que usaba el puerto serie. Cuando la tecnología avanzó, la necesidad por una conectividad externa mayor se incrementó, y el puerto paralelo se volvió la vía por la cual conectar periféricos de alto rendimiento, tales como impresoras compartidas, lectores de discos portátiles y respaldos de cinta, adaptadores de red y reproductores de discos compactos. Los problemas enfrentados por desarrolladores y clientes de dichos dispositivos caían en 3 categorías.
1. A pesar de que el funcionamiento de la PC mejoró notablemente, prácticamente no hubo cambios en la arquitectura de la PC. La tasa de transferencia máxima alcanzado con dicho arquitectura era de 150 kilobytes por segundo y era extremadamente dependiente del software.
2. No había un estándar para la interfaz eléctrica. Esto causó diversos problemas cuando se intentaba garantizar la operación entre plataformas distintas.
3. La falta de estándares de diseño forzó a una limitación de distancia de sólo 6 pies para cables externos.
En 1991 hubo una junta de fabricantes de impresoras para comenzar la discusión sobre el diseño de un nuevo estándar para el control inteligente de impresoras sobre una red. Estos fabricantes, que incluían a Lexmark, IBM, Texas Instruments y otros, formaron la Network Printing Alliance (Alianza de Impresión en Red), y definieron una serie de parámetros que, cuando se implementaban en la impresora y el equipo anfitrión, permitirían el control completo de aplicaciones de impresión y trabajos.
Mientras dicho trabajo avanzaba, se dieron cuenta que la implementación completa de dichos parámetros requeriría una conexión de alto rendimiento bidireccional con la computadora. La conexión ordinaria al puerto paralelo de la PC no tenía las capacidades para cumplir completamente con los requerimientos del estándar.
Entonces la NPA le propuso a la IEEE la creación de un comité que desarrollara un nuevo estándar para un puerto paralelo para PC bidireccional de alta velocidad. Era necesario además que fuera completamente compatible con el software y periféricos del puerto paralelo original, pero que incrementara la capacidad en el radio de transferencia a más de 1 megabyte por segundo, tanto de entrada como de salida de la computadora. Este comité se volvió el IEEE 1284.
Puerto USB
Un puerto USB permite conectar hasta 127 dispositivos y ya es un estándar en los ordenadores de última generación, que incluyen al menos cuatro puertos USB 2.0 en los más modernos, y algún USB 1.1 en los mas anticuados
Pero ¿qué otras ventajas ofrece este puerto? Es totalmente Plug & Play, es decir, con sólo conectar el dispositivo y "en caliente" (con el ordenador ya encendido), el dispositivo es reconocido, e instalado, de manera inmediata. Sólo es necesario que el Sistema Operativo lleve incluido el correspondiente controlador o driver. Presenta una alta velocidad de transferencia en comparación con otro tipo de puertos. USB 1.1 alcanza los 12 Mb/s y hasta los 480 Mb/s (60 MB/s) para USB 2.0, mientras un puerto serie o paralelo tiene una velocidad de transferencia inferior a 1 Mb/s. El puerto USB 2.0 es compatible con los dispositivos USB 1.1
A través del cable USB no sólo se transfieren datos; además es posible alimentar dispositivos externos. El consumo maximo de este controlador es de 2.5 Watts. Los dispositivos se pueden dividir en dispositivos de bajo consumo (hasta 100 mA) y dispositivos de alto consumo (hasta 500 mA). Para dispositivos que necesiten más de 500 mA será necesaria alimentación externa. Hay que tener en cuenta, además, que si se utiliza un concentrador y éste está alimentado, no será necesario realizar consumo del bus. Una de las limitaciones de este tipo de conexiones es que longitud del cable no debe superar los 5 ms y que éste debe cumplir las especificaciones del Standard USB iguales para la 1.1 y la 2.0
1. Puertos VGA
Definición:
El puerto VGA es el puerto estandarizado para conexión del monitor a la PC.
Características:
· Su conector es un HD 15, de 15 pines organizados en 3 hileras horizontales.
Forma: (Anexo H)
Es de forma rectangular, con un recubrimiento plástico para aislar las partes metálicas.
Ubicación en el sistema informatico:
En la parte posterior de los monitores y en la parte trasera del PC, cerca del puerto de S-video.
El conector PS/2 o puerto PS/2 toma su nombre de la serie de ordenadores IBM Personal System/2 que es creada por IBM en1987, y empleada para conectar teclados y ratones. Muchos de los adelantos presentados fueron inmediatamente adoptados por el mercado del PC, siendo este conector uno de los primeros.
La comunicación en ambos casos es serial (bidireccional en el caso del teclado), y controlada por microcontroladores situados en la placa madre. No han sido diseñados para ser intercambiados en caliente, y el hecho de que al hacerlo no suela ocurrir nada es más debido a que los microcontroladores modernos son mucho más resistentes a cortocircuitos en sus líneas de entrada/salida.
Aunque idéntico eléctricamente al conector de teclado AT DIN 5 (con un sencillo adaptador puede usarse uno en otro), por su pequeño tamaño permite que en donde antes sólo entraba el conector de teclado lo hagan ahora el de teclado y ratón, liberando además el puerto RS-232 usado entonces mayoritariamente para los ratones, y que presentaba el inconveniente de compartir interrupciones con otro puerto serial (lo que imposibilitaba el conectar un ratón al COM1 y un módem al COM3, pues cada vez que se movía el ratón cortaba al módem la llamada)
A su vez, las interfaces de teclado y ratón PS/2, aunque eléctricamente similares, se diferencian en que en la interfaz de teclado se requiere en ambos lados un colector abierto para permitir la comunicación bidireccional. Los ordenadores normales de sobremesa no son capaces de identificar al teclado y ratón si se intercambian las posiciones.
En cambio en un ordenador portátil o un equipo de tamaño reducido es muy frecuente ver un sólo conector PS/2 que agrupa en los conectores sobrantes ambas conexiones (ver diagrama) y que mediante un cable especial las divide en los conectores normales.
Por su parte el ratón PS/2 es muy diferente eléctricamente del serie, pero puede usarse mediante adaptadores en un puerto serie.
En los equipos de marca (Dell, Compaq, HP...) su implementación es rápida, mientras que en los clónicos 386, 486 y Pentium, al usar cajas tipo AT, si aparecen es como conectores en uno de los slots. La aparición del estándar ATX da un vuelco al tema. Al ser idénticos ambos se producen numerosas confusiones y códigos de colores e iconos variados (que suelen generar más confusión entre usuarios de diferentes marcas), hasta que Microsoft publica las especificaciones PC 99, que definen un color estándar violeta para el conector de teclado y un color verde para el de ratón, tanto en los conectores de placa madre como en los cables de cada periférico.
Este tipo de conexiones se han utilizado en máquinas no-PC como la DEC AlphaStation o los Acorn RiscPC / Archimedes
En la actualidad, han sido reemplazados por los dispositivos USB Plug & Play en su mayoría, haciéndolos difíciles de encontrar, ya que ofrecen mayor velocidad de conexión, la posibilidad de conectar y desconectar en caliente (con lo que con un sólo teclado y/o ratón puede usarse en varios equipos, lo que elimina las colecciones de teclados o la necesidad de recurrir a un conmutador en salas con varios equipos), además de ofrecer múltiples posibilidades de conexión de más de un periférico de forma compatible, no importando el sistema operativo, bien sea Windows, MacOS ó Linux (Esto es, multiplataforma).
PUERTO FIREWIRE
El IEEE 1394 (conocido como FireWire por Apple Inc. y como i.Link por Sony) es un estándar multiplataforma para la entrada y salida de datos en serie a gran velocidad. Suele utilizarse para la interconexión de dispositivos digitales como cámaras digitales y videocámaras a computadoras.
ETHERNET
Ethernet es un estándar de redes de área local para computadores con acceso al medio por contienda CSMA/CD. ("Acceso Múltiple por Detección de Portadora con Detección de Colisiones"), es una técnica usada en redes Ethernet para mejorar sus prestaciones. El nombre viene del concepto físico de ether. Ethernet define las características de cableado y señalización de nivel físico y los formatos de tramas de datos del nivel de enlace de datos del modelo OSI.
La Ethernet se tomó como base para la redacción del estándar internacional IEEE 802.3. Usualmente se toman Ethernet e IEEE 802.3 como sinónimos. Ambas se diferencian en uno de los campos de la trama de datos. Las tramas Ethernet e IEEE 802.3 pueden coexistir en la misma red.
Hardware comúnmente usado en una red Ethernet
Los elementos de una red Ethernet son: tarjeta de red, repetidores, concentradores, puentes, los conmutadores, los nodos de red y el medio de interconexión. Los nodos de red pueden clasificarse en dos grandes grupos: equipo terminal de datos (DTE) y equipo de comunicación de datos (DCE).
Los DTE son dispositivos de red que generan el destino de los datos: los PC, routers,las estaciones de trabajo, los servidores de archivos, los servidores de impresión; todos son parte del grupo de las estaciones finales. Los DCE son los dispositivos de red intermediarios que reciben y retransmiten las tramas dentro de la red; pueden ser: conmutadores (switch), concentradores (hub), repetidores o interfaces de comunicación. Por ejemplo: un módem o una tarjeta de interfaz.
NIC, o Tarjeta de Interfaz de Red - permite que una computadora acceda a una red local. Cada tarjeta tiene una única dirección MAC que la identifica en la red. Una computadora conectada a una red se denomina nodo.
Repetidor o repeater - aumenta el alcance de una conexión física, recibiendo las señales y retransmitiéndolas, para evitar su degradación, a través del medio de transmisión, lográndose un alcance mayor. Usualmente se usa para unir dos áreas locales de igual tecnología y sólo tiene dos puertos. Opera en la capa física del modelo OSI.
Concentrador o hub - funciona como un repetidor pero permite la interconexión de múltiples nodos. Su funcionamiento es relativamente simple pues recibe una trama de ethernet, por uno de sus puertos, y la repite por todos sus puertos restantes sin ejecutar ningún proceso sobre las mismas. Opera en la capa física del modelo OSI.
Puente o bridge - interconecta segmentos de red haciendo el cambio de frames (tramas) entre las redes de acuerdo con una tabla de direcciones que le dice en qué segmento está ubicada una dirección MAC dada. Se diseñan para uso entre LAN's que usan protocolos idénticos en la capa física y MAC (de acceso al medio). Aunque existen bridges más sofisticados que permiten la conversión de formatos MAC.
Conmutador o Switch - funciona como el bridge, pero permite la interconexión de múltiples segmentos de red, funciona en velocidades más rápidas y es más sofisticado. Los switches pueden tener otras funcionalidades, como Redes virtuales , y permiten su configuración a través de la propia red. Funciona básicamente en la capa 2 del modelo OSI (enlace de datos). Por esto son capaces de procesar información de las tramas; su funcionalidad más importante es en las tablas de dirección. Por ejemplo, una computadora conectada al puerto 1 del conmutador envía una trama a otra computadora conectada al puerto 2; el switch recibe la trama y la transmite a todos sus puertos, excepto aquel por donde la recibió; la computadora 2 recibirá el mensaje y eventualmente lo responderá, generando tráfico en el sentido contrario; ahora el switch conocerá las direcciones MAC de las computadoras en el puerto 1 y 2; cuando reciba otra trama con dirección de destino de alguna de ellas, sólo transmitirá la trama a dicho puerto disminuyendo así el tráfico de la red y contribuyendo al buen funcionamiento de la misma.
Conector jack de 6,3 mm:
I: cuerpo: tierra
I: cuerpo: tierra
2: aro: canal der. Estéreo, negativo en mono balanceado, potencia en fuentes que requieren potencia en mono
3: punta: canal izq. estéreo, positivo en mono balanceado, línea de señal en mono no balanceado
4. anillos aislantes
El conector Jack es un conector de audio utilizado en numerosos dispositivos para la transmisión de sonido en formato analógico.
Hay conectores Jack de varios diámetros: 2,5 mm; 3,5 mm y 6,35 mm . Los más usados son los de 3,5 mm que se utilizan en dispositivos portátiles, como los mp3, para la salida de los auriculares. El de 2,5 mm, también llamado mini Jack, es menos utilizado, pero se utiliza también en dispositivos pequeños. El de 6,35 mm se utiliza sobre todo en audio profesional e instrumentos musicales eléctricos.
HAS CLICK AQUÍ PARA DESCARGAR EL DOCUMENTO:
TARJETA MADRE:http://www.fileserve.com/file/ZVJVujs/TARJETA_MADRE.docx
RANURAS DE EXPANSIÓN:http://www.fileserve.com/file/eJkWCC7/RANURAS_DE_EXPANSIÓN.docx
CONECTORES: http://www.fileserve.com/file/bqZebZx/IDE.docx
MEMORIA RAM:http://www.fileserve.com/file/GxQjrg9/SDRAM.docx
GABINETES
CUARTO PARALELO:http://www.fileserve.com/file/JCszufa/CUARTO_PARALELO_(LPT).docx
Da click para descargar la página web
http://www.megaupload.com/?d=KMJNV28P
Da click para descargar la página web
http://www.megaupload.com/?d=KMJNV28P